您现在的位置: 纽约时报中英文网 >> 纽约时报中英文版 >> 教育 >> 正文

为何基因编辑能创造如此多工作机会?

更新时间:2018-11-6 19:14:44 来源:千亿千亿国际娱乐官网 作者:佚名

Why gene editing could create so many jobs
为何基因编辑能创造如此多工作机会?

Lying back on his hospital bed, Brian Madeux gives a tense smile as he’s hooked up to an intravenous drip. Inside the bag of liquid above his head are billions of tiny fragments of DNA designed to be inserted into his genome, the biological instruction manual found in every cell of the body.

躺在医院的病床上,马德(Brian Madeux)打着吊瓶,脸上露出紧张的微笑。输入他静脉的是经设计而插入他基因组的数十亿个小DNA片段。基因组是人体每个细胞内的生物说明手册。

The 44-year-old from Phoenix, Arizona, who has lived with a rare, life-threatening genetic condition known as Hunter’s Syndrome since birth, last November became the first person in the world to undergo a new type of treatment that edits genes inside his body.

44岁的马德来自美国亚利桑那州菲尼克斯,一出生就患有致命的罕见遗传疾病—亨氏综合症。去年11月,马德成为世界上首个接受体内基因编辑新型治疗的患者。

Minute “molecular scissors” were added to his bloodstream to snip the DNA in his liver cells and insert a gene to repair the defective one he has carried all his life.

极小的"分子剪刀"输入到了他的血液中,剪开他肝细胞中的DNA,然后插入一个新基因,以修复他终生携带的缺陷基因。

"We are at the start of a new frontier of genomic medicine," says Sandy Macrae, chief executive of Sangamo Therapeutics, the biotechnology firm developing the treatment. While it is still too soon to determine how successful the editing of Madeux’s genome has been, it marks a milestone in a new field of science that is widely predicted to revolutionise medicine.

麦克雷(Sandy Macrae)是发展这项治疗的生物科技公司圣加蒙治疗(Sangamo Therapeutics)的首席执行官。他说,“我们现站在基因医学最新前沿的开端”。谈论马德的基因编辑治疗会有多成功,现在还言之过早,但已可以说,是这一广泛预测会掀起医学革命的新领域之里程碑。

As more treatments that rely on gene editing move from research laboratories into hospitals around the world, the demand for the skilled genetic engineers who make it possible is expected to soar. The UK government predicts there could be more than 18,000 new jobs created by gene and cell therapy in Britain alone by 2030, while the US Bureau of Labor Statistics estimates it will see a 7% increase in jobs for biomedical engineers and a 13% increase in medical scientists, together accounting for around 17,500 jobs.

世界上越来越多依靠基因编辑的疗法正在走出实验室进入医院,人们预计对能够让基因编辑治疗变成现实的基因技术工程师的需求会因此大增。英国政府预测到2030年基因和细胞治疗仅在英国就能创造超过18,000个新就业机会。美国劳工统计局估计生物医学工程师的就业机会将增加7%,医学家的就业机会将增加13%,共计约17,500个就业机会。

But there will also be a need for people away from the laboratory bench, including those who can help make sense of the huge amounts of data that will be generated as medical treatment becomes increasingly personalised to patients’ individual genomes.

对非实验室工作人员的需求也会增加,其中包括可以解读大量数据的人员,因为针对病人个体基因的个性化治疗也在增加。

“Gene therapy is rapidly becoming an accepted and growing part of the medical research and development industry,” says Michele Calos, president of the American Society of Gene and Cell Therapy and a professor of genetics at Stanford University. “The growth of established and new gene therapy companies is expected to be accompanied by an increase in jobs, as these companies recruit scientists to staff their expanded operations.

卡洛斯(Michele Calos)是美国基因与细胞治疗学会主席、斯坦福大学的遗传学教授,她说:“基因治疗已迅速成为医学研究和产业发展的一部分,而且这一部分增长很快。老基因治疗公司的发展和新基因治疗公司的出现会增加许多就业机会,因为这些公司需要为拓展业务招募科学家。”

“The gene therapy industry requires a range of graduates, with backgrounds in scientific fields like genetics, medicine, molecular biology, virology, bioengineering and chemical engineering, as well as business graduates.”

“基因治疗产业需要各种学科背景的毕业生,比如遗传、医学、分子生物学、病毒学、生物工程和化学工程等领域,还有商科毕业生。”

Much of the hype around gene editing lies in its ability to correct genetic defects that currently have no cure, such as cystic fibrosis and haemophilia. Many of the major pharmaceutical companies are betting on it becoming a key tool in the future of healthcare.

大多数有关基因编辑技术的宣传主要强调能够修正人类目前无法治愈的遗传缺陷,比如囊性纤维化和血友病。许多大型制药公司都认为基因编辑将成为未来医疗的重要工具。

According to some projections, the global genome editing market is expected to double in size over the five years from 2017 to reach a value of $6.28bn (£4.84bn). Earlier this year, the UK government announced it was investing £60m ($76m) into a new cell and gene therapy manufacturing centre to help speed up the development of new treatments. In the US, the National Human Genome Research Institute predicts there will be a “considerable” increase in demand for employees in tandem with this growth.

有预测称,从2017年起的五年间,全球基因编辑技术的商业价值有望翻一番达到62.8亿美元(48.4亿英镑)。今年早些时候,英国政府宣布给一个新成立的细胞与基因治疗制造中心投资6000万英镑(7600万美元),为发展新疗法助力。美国国家人类基因组研究所预测,随着基因编辑的快速发展,水长船高,对有关科技人员的需求其增长将相当可观。

There are already some 2,700 clinical trials using gene therapies under way or approved around the world, aiming to combat diseases as diverse as cancer, muscular dystrophy and sickle cell anaemia. Most of the small gene therapy companies behind these trials have partnerships or have received investment from much bigger drug firms, including Bayer, GlaxoSmithKline, Pfizer, Merck and Novartis. A quick search on recruitment websites reveals most of these pharma firms are actively seeking to hire their own gene therapy scientists too.

全球已有约 2,700例正在进行或已经批准的利用基因治疗的临床试验,目的是攻克癌症、肌肉萎缩和镰状细胞贫血在内的多种疾病。这些临床试验背后的小基因治疗公司大多有大型医药公司的赞助或合作,包括拜耳、葛兰素史克、辉瑞、默克和诺华等。随便在招聘网站上搜索一下就能发现,这些制药公司大多也正在积极招聘自己的基因治疗科学家。

One reason for the rise in demand for skilled workers is the huge range of expertise likely to be needed as gene therapies begin to become available.

对科技工人的需求增多,一个原因是基因治疗成为现实后需要许多专业人员。

“It is a really multi-disciplinary field,” says Güneş Taylor, a researcher at The Francis Crick Institute in London. She has been using gene editing techniques as part of her studies on the sex chromosomes, which could eventually be used to help people with fertility problems or developmental sex disorders such as Rokitansky syndrome, where girls can be born without a womb. “We need molecular scientists, engineers and computer scientists to help us interpret the huge amounts of data modern genetic techniques produce,” she says.

伦敦弗朗西斯·克里克研究院的研究员泰勒(Güneş Taylor)说,“基因治疗真的是一个多学科的领域”。她在性染色体的研究中用到了基因编辑技术,其研究最终能够帮助不孕不育或有性发育障碍的人,比如苗勒管发育不全患者,即可能先天性没有子宫的女性。她说:“需要分子科学家、工程师和计算机学家帮助我们解读现代基因技术产生的大量数据。”

While salaries will depend on the qualifications needed for each role, they are likely to be higher than average due to the high skill levels required. Medical geneticists, for example, can expect to earn between $39,870 and $134,770 annually while a bioinformatician, who helps to interpret genetic data, would earn $35,620-$101,030 a year, according to the National Human Genome Research Institute.

虽然薪资取决于各个岗位所需的资历,但这些职位的薪资有望高于平均水平,因为要求的技能水平较高。据国家人类基因组研究所的资料,医学遗传学家每年收入为39,870 到134,770美元,帮助解读遗传数据的生物信息学家每年能收入35,620到101,030美元。

“There is a lot of hype around gene editing and if even some of those are to be realised, it will involve a lot of people doing research,” says Taylor. “But as treatments start to emerge, we will also need clinicians and ethicists to help us with some of the issues that might be involved.”

泰勒说:“许多有关基因编辑的宣传,即使仅有一些能够实现,也需要许多人做研究。但用于治疗以后,我们还需要临床医师和伦理学家帮助我们解决可能出现的问题。”

Taylor uses a powerful new gene editing tool known as CRISPR-Cas9, which harnesses part of the defence mechanism used by bacteria to edit genes in other organisms. Its invention five years ago has transformed the speed and cost of editing genes, allowing scientists to accurately delete troublesome genes or create precise breaks in the DNA where new genes can be inserted. It has spurred a surge in research to identify defective genes in diseases.

泰勒用的是强大的新型基因编辑工具CRISPR-Cas9,此基因编辑技术利用细菌免疫防御机制的一部分来编辑其他有机体的基因。5年前CRISPR-Cas9的发明彻底转变了基因编辑的效率和花费,能够让科学家精准删除缺陷基因,或准确切开DNA以插入新的基因,这大大刺激了寻找疾病缺陷基因的研究发展。

While not many diseases can simply be turned off by deleting these defective genes, CRISPR-Cas9 has opened a new door for treating patients and unravelling how other conditions might be tackled.

虽然不是很多疾病能通过简单地删除缺陷基因而解决,但 CRISPR-Cas9为治疗病患打开了一扇新的大门,啟示科學家可怎樣著手其他情况。

“It is such an exciting time to be a molecular biologist,” says Taylor. “I have wanted to be a scientist since I was 15 years old and ended up working on gene editing by chance. There can be days where I’m in the laboratory doing repetitive work, but every day is different and it lets me pursue answers to some big questions.”

泰勒说:“作为分子生物学家,這是一個令人振奮的時候。我从15岁就想成为一名科学家,最后偶然地从事了基因编辑工作。虽然有的时候需要待在实验室里做重复性的工作,但其实每一天都不一样,让我去寻求一些大问题的答案。”

However, the scale at which the potential of gene editing can be realised will depend on how the regulatory environment evolves over the coming years. It remains a controversial approach because little is known about the long-term effects of altering a person’s DNA. Unintended changes could cause cells to turn cancerous, for example, or could trigger an immune response if the patient’s body reacts to the introduced gene.

然而,基因编辑到底能发展到何种规模有赖于接下来几年政策环境的进步。基因编辑仍是一个有争议的科技,因为改变一个人基因后的长期影响如何还是未知数。比如,预料外的变化可能导致细胞癌变,如果患者身体对插入的基因有反应,可能触发免疫反应。

There are ethical issues too, particularly surrounding the editing of genes in egg and sperm cells rather than those of other adult cells in the body. This could be used to combat diseases that are passed down through families, generation to generation, but it also raises the prospect of tinkering with other traits like eye colour or height.

还有伦理问题,尤其是与人体成年细胞的基因改造之外的卵子和精子细胞的基因编辑争议最大。编辑精子卵子能够用来防止家族内代代相传的遗传疾病,但也可能用来改造其他人体特征,比如瞳孔颜色或身高。

For this reason, genetic editing of plants, animals and humans is extremely tightly controlled in places like Europe, while in the US, slightly more relaxed rules have allowed some clinical trials to go ahead.

因此,一些地区,比如欧洲严格控制植物、动物和人类的基因编辑。但美国政策相对宽松,允许进行一些临床试验。

China is currently leading the world in gene editing. Earlier this year it emerged that it had approved clinical trials involving 300 patients that will use CRISPR-Cas9 to treat a range of conditions. Scientists in China have also already used the technique to treat 86 patients suffering from cancer and HIV.

中国如今走在基因编辑领域的前列。今年早些时候中国批准实用基因编辑工具CRISPR-Cas9治疗各种疾病的临床试验,共涉及300位病患。中国的科学家已经用这项技术治疗了86位癌症和艾滋病患者。

While many of China’s gene therapy pioneers were trained abroad, they are now teaching a new generation of medical students how to use techniques like CRISPR within the country. The Chinese government has also prioritised gene editing as part of its latest five-year plan that will see billions of dollars ploughed into research.

虽然许多中国基因治疗的先驱是在国外接受训练,但他们如今正在国内教授新一代医学生如何使用CRISPR这样的技术。中国政府也把基因编辑放在最新五年计划的首要位置,并会投入数十亿资金用于科研。

But as gene editing begins to be used on patients, there are some who are uncomfortable with the idea of tinkering with the code that gives each of us life. Already the use of genetics to diagnose diseases that can be passed to children and grandchildren is leading to a rapid increase in another occupation that just a few years ago did not exist - genetic counsellors.

但随着基因编辑开始用于病患,但也有一些人士对人为打乱上天赋予我们生命密码而感到不快。运用基因治疗可能遗传给子子孙孙的遗传疾病已经促成了几年前还不存在的职业"遗传顾问"的快速发展。

“As patients and medical staff have to take difficult decisions that involve genetics, they will need support to interpret the information they are being given,” says Christine Patch, vice president of the European Society for Human Genetics and a genetic counsellor.

欧洲人类遗传学会副主席帕奇(Christine Patch)也是一名遗传顾问,她说:“在病患和医疗人员必须做出有关遗传改造的困难决定时,需要有人帮助他们解读相关信息。”

The US Bureau of Labor Statistics ranks genetic counsellors as one of its top 20 fastest growing jobs. It predicts the number of jobs available for experts who can interpret genetic information, offer support and advice to medical staff and guide patients through the decisions they will need to take will increase by 29% by 2026.

美国劳工统计局将遗传顾问一职列为20个增长最快的职业之一,并预测,到2026年能解读遗传信息、为医疗人员提供支持和建议,并能引导病人做出决定的专家职位将增加29%。

“Gene therapy is going to involve some difficult choices for patients and they will need to consider the risks just as they would with any other treatment,” warns Patch. “To do this they will need to be able to understand what is involved. Healthcare professionals will also need to increase their genetics knowledge and there is going to be a growing role for people with an expertise in this.”

帕奇警告说:“基因治疗需要病患做出一些困难的决定,和其他治疗方式一样都需要考虑风险,为此他们需要理解这种治疗会涉及到什么问题。医疗专业人员同样也需要提高他们的基因知识,因此精专于这个领域的专业人士其角色会越来越重要。”

“全文请访问千亿千亿国际娱乐官网,本文发表于千亿千亿国际娱乐官网(http://cn.nytimes.com),版权归纽约时报公司所有。任何单位及个人未经许可,不得擅自转载或翻译。订阅千亿千亿国际娱乐官网新闻电邮:http://nytcn.me/subscription/”

相关文章列表
博评网